US009225746B2

a2z United States Patent (10) Patent No.: US 9,225,746 B2
Osborne et al. (45) Date of Patent: Dec. 29, 2015
(54) TIMESTAMP SYSTEMS AND METHODS 2010/0118793 Al* 5/2010 Hornetal. 370/329
2014/0029611 Al* 1/2014 Huangetal. 370/389
(71) Applicant: International Business Machines 2014/0095887 Al* 4/2014 Nayshtutetal. 713/189
Corporation, Armonk, NY (US) FOREIGN PATENT DOCUMENTS
(72) Inventors: Michael C. Osborne,.Richterswil (CH); EP (841124 AL 10/2007
James W. Sweeny, Millbrook, NY (US); 1P 2011082727 A 4/2011
Tamas Visegrady, Zurich (CH)
OTHER PUBLICATIONS
(73) Assignee: Internati(?nal Business Machines Huhnlein, Detlef “How to Qualify electronic signatures and time
Corporation, Armonk, NY (US) stamps”, Lecture Notes in Computer Science, 2004, v. 3093/2004,
. . Lo . 606, 9 pages.
(*) Notice: SUbJeCt. to any disclaimer. > the term of this Minocci, “Developing Secure Applications using Hardware Security
patent is extended or adjusted under 35 Modules,” Thesis, Southern Connecticut State University, 2007, 84
U.S.C. 154(b) by 40 days. pages.
Yavus et al., “HIMUTSIS: Heirarchical Multi-Tier Adaptive Ad-Hoc
(21) Appl. No.: 14/104,831 Network Security Protocol Based onigneryption Type Key Exchange
’ Schemes,” ISCIS 2006, LNCS 4263, pp. 434-444, 2006.
(22) Filed: Dec. 12,2013 * cited by examiner
(65) Prior Publication Data Primary Examiner — Aravind Moorthy
US 2015/0172317 Al Jun. 18, 2015 (74) Attorney, Agent, or Firm — Cantor Colburn LLP;
William A. Kinnaman, Jr.
(51) Imt.ClL
HO4L 9/32 (2006.01) 67 ABSTRACT
HO4L 29/06 (2006.01) According to some exemplary embodiments, a computer-
(52) US.CL implemented timestamp method includes maintaining, at a
CPC HO4L 63/20 (2013.01); HO4L 9/3297 cryptographic service provider (CSP), one or more timestamp
(2013.01) policies specifying when digital timestamps should be issued.
(58) Field of Classification Search A timestamp request is received at the CSP from a timestamp
CPC oo, HO4L 63/20; HO4L 9/3297 authority that manages timestamping and is accompanied by
USPC e 713/178 a corresponding timestamp data structure. With a computer
See application file for complete search history. processor, a difference is determined between a first time
specified in the timestamp data structure and a second time
(56) References Cited indicated by an internal clock of the CSP. The timestamp

U.S. PATENT DOCUMENTS

7,409,557 B2 8/2008 Teppler

7,702,909 B2 4/2010 Vainstein
2002/0056042 Al* 5/2002 van der Kaayetal. ... 713/178
2007/0115927 Al 5/2007 Pearson
2008/0022094 Al* 1/2008 Guptaetal. 713/165

— user {application} —

rejection

N
e
[e)

— {appliance boundary}
Timestamp Authority (184}

request is rejected if the first timestamp data structure fails to
comply with a predetermined timestamp policy, where the
predetermined timestamp policy requires that the difference
between the first time and the second time be below a prede-
termined threshold.

20 Claims, 3 Drawing Sheets

220

= sighing device
12:00
240 frusied clock
TS info parsing
- and coss-checking

policy

rejection
TS formatiing

structure T

US 9,225,746 B2

Sheet 1 of 3

Dec. 29, 2015

U.S. Patent

0s

Ov1 90taeg
mding

S¢l1 Brjonuo’
mdinoynduy

111 S/0

091 eorIoU]
JI0MION

G11 Jo[jonuo))
KIowop

¢71 I2[[onuo))
Aerdsiq

011 ATomwa

071 93e101S

L1 34oe)

$OT J0s$3001]

%

0€1 \\

01

US 9,225,746 B2

Sheet 2 of 3

Dec. 29, 2015

U.S. Patent

¢ 'S

vogeeush anpubs
Bumewwo) 1

!

BHYONNS
dumsenn

uonoalas
Aoyod

Suppasyd-sson pue
Buisied ojui S 1

. AIIASD BUILUBIS

(vsi)

Auoyiny dwejsawii]

N\

0ce

{Aepunog souendde) —

P. Se—

{uonesijdde) sesn

US 9,225,746 B2

Sheet 3 of 3

Dec. 29, 2015

U.S. Patent

St pue duseysaig
_— DB
O _. o dueysswn
SMBAUTE §1 1Spo
suoneopads Avgod
UOREIUISA
l.om LA B :
~=a (Y AFLIRs
povsnn ONMU (yubry
5
pasan sciuesag pauls)
FARRLSIUIUDI-UOU W
SIEIYLIBT INOLA > W
sdwesawy sapeasiaupe peulis
L] B — S
MHU sdwesewy sapensawpe paulis 250
184 {sRoynIe0) A
AojRnSRIWPE pagsna - sousnb perer
— - _— wmnap Buubis SaniAIes
482

00¢

VSl

US 9,225,746 B2

1
TIMESTAMP SYSTEMS AND METHODS

BACKGROUND

Various embodiments of this disclosure relate to digital
timestamping and, more particularly, to integrating high-as-
surance timestamping into cryptographic service providers
(CSPs).

Digital timestamps are dedicated uses of digital signatures,
in which digital signatures tie document content or events to
a specific date and time. Digital signatures attest to the spe-
cific content being available at the given time with security
assurances provided by the timestamping environment.

Due to the complexity of timestamp issuance high-assur-
ance timestamp servers are generally deployed as dedicated
appliances, and may not be easily integrated into servers. In
restricted enterprise environments, adding these dedicated
appliances, which have their own access control require-
ments, may be problematic. This problem is compounded for
servers hosting a multiple consolidated virtual systems, if
they expect a corresponding large number of timestamp-is-
suing appliances.

SUMMARY

In one embodiment of this disclosure, a computer-imple-
mented timestamp method includes maintaining, at a CSP,
one or more timestamp policies specifying when digital
timestamps should be issued. A timestamp request is received
at the CSP from a timestamp authority that manages times-
tamping and is accompanied by a corresponding timestamp
data structure. With a computer processor, a difference is
determined between a first time specified in the timestamp
data structure and a second time indicated by an internal clock
of the CSP. The timestamp request is rejected if the first
timestamp data structure fails to comply with a predeter-
mined timestamp policy, where the predetermined timestamp
policy requires that the difference between the first time and
the second time be below a predetermined threshold.

In another embodiment, a timestamp system includes a
CSP and a computer processor. The CSP is configured to
maintain one or more timestamp policies specifying when
digital timestamps should be issued, and to receive a times-
tamp request transmitted from a timestamp authority, the
timestamp request being accompanied by a corresponding
timestamp data structure. The computer processor is config-
ured to determine a difference between a first time specified in
the timestamp data structure and a second time indicated by
an internal clock of the CSP. The CSP is further configured to
reject the timestamp request if the timestamp data structure
fails to comply with a predetermined timestamp policy, where
the predetermined timestamp policy requires that the differ-
ence between the first time and the second time be below a
predetermined threshold.

In yet another embodiment, a computer program product
includes a computer readable storage medium having com-
puter readable program code embodied thereon. The com-
puter readable program code is executable by a processor to
perform a method. The method includes maintaining, at a
CSP, one or more timestamp policies specifying when digital
timestamps should be issued. According to the method, a
timestamp request is received at the CSP from a timestamp
authority that manages timestamping and is accompanied by
a corresponding timestamp data structure. With a computer
processor, a difference is determined between a first time
specified in the timestamp data structure and a second time
indicated by an internal clock of the CSP. The timestamp

25

40

45

55

2

request is rejected if the first timestamp data structure fails to
comply with a predetermined timestamp policy, where the
predetermined timestamp policy requires that the difference
between the first time and the second time be below a prede-
termined threshold.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 is a block diagram of a computing device for per-
forming one or more aspects of a timestamp system, accord-
ing to an exemplary embodiment of this disclosure;

FIG. 2 is a block diagram of a high-assurance signing
device, of which the timestamp system may be a modifica-
tion, according to an exemplary embodiment of this disclo-
sure; and

FIG. 3 is a diagram of a timestamp system, according to an
exemplary embodiment of this disclosure.

DETAILED DESCRIPTION

Timestamp systems and methods, according to some
embodiments of this disclosure, may issue high-assurance
timestamps and may be integrated into standalone CSPs, such
as hardware security modules (HSMs). An exemplary times-
tamp system may generate timestamps securely while del-
egating at least a portion of timestamp construction to a host,
which need not be a trusted host. The signing hardware of an
exemplary timestamp system may be a customized version of
the commodity CSP. Since this exemplary timestamp system
adds only minor extensions of types already foreseen by the
CSP, the augmented CSP that results may continue to be used
by applications unaware of the timestamp-specific additions.

Thus, the timestamp system may be easily integrated into a
server-internal HSM without necessitating a standalone
appliance. Further, the timestamp system may be managed
through in-band administrative traffic and, therefore, may be
deployed without adding service channels to the CSP.

FIG. 1 illustrates a block diagram of a computer system
100 for use in implementing a timestamp system or method
according to some embodiments. The timestamp systems and
methods described herein may be implemented in hardware,
software (e.g., firmware), or a combination thereof. In an
exemplary embodiment, the systems and methods described
may be implemented, at least in part, in hardware and may be
part of the microprocessor of a special or general-purpose
computer system 100, such as a personal computer, worksta-
tion, minicomputer, or mainframe computer.

In an exemplary embodiment, as shown in FIG. 1, the
computer system 100 includes a processor 105, memory 110
coupled to a memory controller 115, and one or more input
and/or output (I/O) devices 140 and 145, such as peripherals,
that are communicatively coupled via a local /O controller
135. The /O controller 135 may be, for example but not
limitation, one or more buses or other wired or wireless con-

US 9,225,746 B2

3

nections, as are known in the art. The /O controller 135 may
have additional elements, which are omitted for simplicity,
such as controllers, buffers (caches), drivers, repeaters, and
receivers, to enable communications.

The processor 105 is a hardware device for executing hard-
ware instructions or software, particularly those stored in
memory 110. The processor 105 may be any custom made or
commercially available processor, a central processing unit
(CPU), an auxiliary processor among several processors
associated with the computer system 100, a semiconductor
based microprocessor (in the form of a microchip or chip set),
a macroprocessor, or other device for executing instructions.
The processor 105 includes a cache 170, which may include,
but is not limited to, an instruction cache to speed up execut-
able instruction fetch, a data cache to speed up data fetch and
store, and a translation lookaside buffer (TL.B) used to speed
up virtual-to-physical address translation for both executable
instructions and data. The cache 170 may be organized as a
hierarchy of more cache levels (L1, L2, etc.).

The memory 110 may include any one or combinations of
volatile memory elements (e.g., random access memory,
RAM, such as DRAM, SRAM, SDRAM, etc.) and nonvola-
tile memory elements (e.g., ROM, erasable programmable
read only memory (EPROM), electronically erasable pro-
grammable read only memory (EEPROM), programmable
read only memory (PROM), tape, compact disc read only
memory (CD-ROM), disk, diskette, cartridge, cassette or the
like, etc.). Moreover, the memory 110 may incorporate elec-
tronic, magnetic, optical, or other types of storage media.
Note that the memory 110 may have a distributed architec-
ture, where various components are situated remote from one
another but may be accessed by the processor 105.

The instructions in memory 110 may include one or more
separate programs, each of which comprises an ordered list-
ing of executable instructions for implementing logical func-
tions. Inthe example of F1G. 1, the instructions in the memory
110 include a suitable operating system (OS) 111. The oper-
ating system 111 essentially may control the execution of
other computer programs and provides scheduling, input-
output control, file and data management, memory manage-
ment, and communication control and related services.

Additional data, including, for example, instructions for
the processor 105 or other retrievable information, may be
stored in storage 120, which may be a storage device such as
a hard disk drive.

In an exemplary embodiment, a conventional keyboard
150 and mouse 155 may be coupled to the I/O controller 135.
Other output devices such as the /O devices 140 and 145 may
include input devices, for example but not limited to, a printer,
a scanner, a microphone, and the like. The 1/O devices 140,
145 may further include devices that communicate both
inputs and outputs, for instance but not limited to, a network
interface card (NIC) or modulator/demodulator (for access-
ing other files, devices, systems, or a network), a radio fre-
quency (RF) or other transceiver, a telephonic interface, a
bridge, a router, and the like.

The computer system 100 may further include a display
controller 125 coupled to a display 130. In an exemplary
embodiment, the computer system 100 may further include a
network interface 160 for coupling to a network 165. The
network 165 may be an IP-based network for communication
between the computer system 100 and any external server,
client and the like via a broadband connection. The network
165 transmits and receives data between the computer system
100 and external systems. In an exemplary embodiment, the
network 165 may be a managed IP network administered by
a service provider. The network 165 may be implemented in

40

45

55

4

a wireless fashion, e.g., using wireless protocols and tech-
nologies, such as WiFi, WiMax, etc. The network 165 may
also be a packet-switched network such as a local area net-
work, wide area network, metropolitan area network, the
Internet, or other similar type of network environment. The
network 165 may be a fixed wireless network, a wireless local
area network (LAN), a wireless wide area network (WAN) a
personal area network (PAN), a virtual private network
(VPN), intranet or other suitable network system and may
include equipment for receiving and transmitting signals.

Timestamp systems and methods according to this disclo-
sure may be embodied, in whole or in part, in computer
program products or in computer systems 100, such as that
illustrated in FIG. 1.

FIG. 2 illustrates a high-assurance signing device, of which
the timestamp system 300 (FIG. 3) may be a modification,
according to an exemplary embodiment of this disclosure. A
user application 210, such as a timestamp service, may gen-
erate a fingerprint of a document to be signed. The fingerprint
may be cryptographically strong, such as a document-specific
value generated through a cryptographic hash function. Other
methods of generating the fingerprint may also be used,
according to conventional methods, so long as the methods
can be repeated with the same results for verification pur-
poses.

The user application 210 may provide the document fin-
gerprint, either by generating it or receiving it from another
application. The user application 210 may transmit a times-
tamp request to a timestamp appliance 220. The timestamp
request may include the fingerprint, as well as related meta-
data. The metadata may include, for example, a description of
a requested signing policy, timestamp fields, or document
attributes.

The timestamp appliance 220 may include a timestamp
authority (TSA) 230 and a signing device 240. The TSA 230
may analyze the request and determine whether or not to issue
a timestamp, based on the content of the request and pre-
defined timestamp requirements. A signature may be issued if
the request is accepted, and a rejection may be issued other-
wise.

If the TSA 230 accepts the timestamp request, it may
construct a timestamp data structure containing the follow-
ing, for example: the document fingerprint, a timestamp serial
number, a date and time as determined by the TSA 230, an
indication of the TSA’s clock accuracy with respect to the
date and time (e.g., an indication of the potential inaccuracy
in the date and time), and the timestamp issuance policy
requested. This data structure may be passed to the signing
device 240.

The signing device 240 may insert the data structure into a
digital signature envelope and then sign the data structure. In
a conventional, dedicated timestamp appliance, the signing
device may apply minimal checking to the data structure,
trusting the rest of the TSA 230 to provide signable data. In
these appliances 220, where the signing device 240 trusts the
TSA 230 completely, the issued timestamp complies only
with the potentially lower assurance level of the TSA 230, and
not that of the more secure signing device 240. Depending on
the timestamp request metadata and the TSA 230 implemen-
tation, the resulting signed timestamp in response to the user
application 210 may either include all metadata necessary for
standalone verification, or verification of the signed times-
tamp may require published supplementary information,
such as published certificate chains.

FIG. 3 illustrates a timestamp system 300, according to an
exemplary embodiment of this disclosure. An exemplary
embodiment of the timestamp system 300 is a modification of

US 9,225,746 B2

5

the above-described system in FIG. 2. The timestamp system
300 may use a customizable, standalone CSP 310 as the
signing device 240. Timestamps may be generated securely
while delegating much of timestamp construction to an
untrusted TSA 230. Minor extensions may be added to the
CSP 310 to achieve these results, but extensions of this kind
may be foreseen by the CSP manufacturers. Thus, the CSP
310 may continue to be used by applications unaware of
timestamp-specific additions. The timestamp system may
include a limited number of attributes dedicated to times-
tamping, transparently integrated into the CSP 310. In an
exemplary embodiment, these additional attributes are cus-
tom attributes and restrictions on data input formats. Since the
signing hardware may be a customized version of a commod-
ity CSP, this hardware can be easily integrated into server-
internal HSMs, not necessitating standalone appliances. Fur-
ther, the timestamp system 300 may be managed through
in-band administrative traffic, and may therefore be deployed
without adding service channels.

The timestamp system 300 need not require management
channels or other caller-visible additions to the CSP applica-
tion programming interface (API). Rather, specially anno-
tated timestamp data structures may be used to pass admin-
istrative instructions to the CSP 310. The timestamp system
300 may be managed through in-band signaling embedded in
the timestamp request flow. As a result of this signaling, the
system may react in a context-aware manner. Because the
system 300 may extend its host CSP 310 using this signaling,
and because it need not add new functions to the TSA’s API,
the timestamp functionality may be transparently added to the
CSP 310, preserving binary compatibility with existing users
of the CSP 310.

As described above with respect to FIG. 2, the TSA 230
may provide to the CSP 310 a timestamp data structure cor-
responding to a timestamp request not rejected by the TSA
230. According to some exemplary embodiments, the CSP
310 may crosscheck input from the TSA 230. This cross-
checking may be used to verify, among other things, that the
TSA’s claimed date and time is sufficiently accurate as com-
pared to a predetermined maximum difference between the
claimed date and time and the CSP’s internal date and time.
Because the CSP 310 ensures that the TSA’s input is suffi-
cient with respect to the CSP’s predetermined standards, the
timestamp system 300 may inherit the security assurance the
CSP 310. In other words, the timestamp system 300 may be as
secure as the CSP 310 regardless of a lower TSA security
assurance level. This higher level of security may be the case
even if some or most of timestamp construction occurs within
the TSA. This is an improvement over conventional systems,
which can be deemed no more secure than the TSA 230 if the
CSP does not take part in policy enforcement.

An exemplary timestamp system 300 may be built on top of
an existing CSP 310, requiring orthogonal additions to the
CSP of the type generally foreseen by CSP designers. Thus,
the extensions may avoid interference with unrelated appli-
cations. For example, one or more extensions may be added to
the CSP 310.

A first added extension may be a custom attribute dedicat-
ing keys to timestamping. Modular CSPs allow built-in meth-
ods of specifying extended attributes and key types. In an
exemplary embodiment, a CSP-wide Boolean attribute may
be added and used to restrict a CSP object to signing times-
tamp requests, with such keys rejecting any other kind of
input data. In other words, the Boolean value, which can have
either a true value or a false value at a given time for the
corresponding request, indicates to the CSP 310 whether the
request is to be signed. If a request is not suited for signing or

20

40

45

50

6

is not a timestamp request, the TSA 230 may set that value to
false, thus indicating that the CSP 310 should not sign in
response to the request and corresponding data. In an exem-
plary embodiment, this attribute may be added to the CSP 310
without impacting other CSP attributes.

In some embodiments, custom attributes added to the CSP
310 for use in the timestamp system 300 may be restricted to
a subset of partitions within the CSP 310. In that case, to
prevent use of these custom attributes by requests to the CSP
310 that are deemed not to be timestamp-related (e.g., such as
those requests where the above Boolean value is set to false),
such requests may be routed to partitions outside of this
selected subset of partitions. While this would prevent use of
general-purpose CSP objects within the subset reserved for
timestamping, it may also provide sufficient separation
between timestamp attributes and generic attributes where
required.

A second extension to the CSP 310 may be an attribute
indicating an allowable clock drift. Timestamp data structures
that reference dates and times differing from the CSP clock by
an amount of time that exceeds the value of this attribute may
be rejected for signing, thus allowing the CSP 310 to prevent
the timestamp system 300 from issuing out-of-date times-
tamps. In some embodiment, the timestamp system 300 may
maintain transaction counters and failure history due to
excess time drift. As a result, policy rejections and key expi-
ration may be reliably audited by the TSA 230.

The CSP 310 may be extended to enforce one or more
signing policies. Assuming policy decisions can be described
in terms of properties of timestamp requests and the signing
keys, the timestamp system 300 may describe conditions such
as the following: signing keys may be restricted in the policies
they accept, forming a compatibility matrix of keys versus
policies; policies may only be accepted for predefined groups
of’keys, such as keys of certain strength or key type; and keys
may be restricted based on current time or key age. More
generally, the timestamp system 300 may combine signing
policies with key lifecycle rules, for example, to result in
time-based key retirement. The above are not a limiting set of
policies. Rather, signing policy rules may be formulated with
straightforward additions to the set of timestamp-specific
attributes. Further, when the CSP 310 crosschecks policies, it
may return dedicated errors, such as describing a key being
rejected due to its certificate being expired.

It will be understood by one skilled in the art that, in some
cases, policy additions may be relevant to both the TSA 230
and the CSP 310. This disclosure, however, focuses on the
subset of extensions that may be observed and enforced by the
CSP 310. Attribute enforcement at the TSA 230 may have a
lower level of assurance, so in exemplary embodiments, addi-
tional enforcement may be required by the CSP 310.

A management interface 320 may be added to the CSP 310
to interact with the custom attributes. In a modular CSP,
standard management interfaces are assumed to tolerate
extended attributes without customization. An exemplary
timestamp system 300 may therefore be based on existing
services, so long as the modular CSP is properly imple-
mented. For applications 210 using the CSP 310 for other
than timestamping service, these custom attributes would be
opaque and ignored.

The timestamp system 300 may establish interaction rules
between standard attributes (i.e., those packaged with the
CSP 310) and custom ones (i.e., those added to implement
various aspects of this disclosure). In an exemplary embodi-
ment, the custom attributes may be orthogonal to the standard
attributes. Further, the timestamp system 300 may impose
few restrictions not already standard in the CSP 310. These

US 9,225,746 B2

7

restrictions may include, for example, enabling signing only
of timestamp requests and no other requests, or preventing
timestamp keys from being exported.

The timestamp system 300 may enforce a defined times-
tamp format, which may include date/time updates and
administrator certificates in the timestamp data stream. The
timestamp format may include specialized metadata or
attributes, enabling unambiguous distinguishing between
timestamp requests and administrative traffic. For example, a
conventional timestamp format may generally provide stan-
dardized metadata attributes with special meaning for times-
tamp use. Upon seeing these specific metadata, the TSA 230
may flag this traffic as administrative, so that the signing
device does not attempt to sign that traffic. This flagging may
be implemented using, for example, the Boolean variable
mentioned above. As a result, the timestamp system 300 may
include, in the CSP 310, a multiplexing function that (1)
detects the administrative traffic related to timestamping and
(2) dispatches this traffic to internal timestamp handler. The
CSP 310 itself need have only a passive understanding of
timestamp formats, allowing the TSA 230 to construct the
timestamp data structures with the required extensions. Thus,
most of the knowledge of timestamp format details may be
delegated to user applications 210, while the CSP 310 may
require only minimal parsing capabilities.

The timestamp system 100 may be administrated in-band,
i.e., inside pre-established communication methods or chan-
nels. For example, and not by way of limitation, the times-
tamp system 300 may include administrative support through
specially formatted requests for one or more of the following:
management of administrative certificates, such as addition
or revocation; setting the absolute time; and setting time
through incremental relative updates.

Since conventional timestamps often already include
metadata and certificate data, these timestamps may be easily
adapted to incorporate administrative traffic encapsulated in
the timestamp data structure, which can be sent through the
same channels as timestamp requests and responses. An
exemplary timestamp system 300 may therefore embed
administrative traffic as timestamp data structures, such as
those passed to the CSP 310 for verification. In that case, the
CSP 310 may interpret the timestamp data structure as admin-
istrative traffic and handle it accordingly.

The CSP 310 follow predetermined guidelines for deter-
mining when a timestamp structure is to be classified as
administrative traffic. For example, the timestamp structure
may need to be pre-signed by authorized administrators,
based on a whitelist of administrators retained within the CSP
310. If administrative traffic is required to be approved by two
or more administrators, such as for security purposes, the
CSP 310 may identify the two or more required signatures or
certificates.

Some timestamp requests and corresponding timestamp
data structures, including administrative traffic, may be
accompanied by an administrative certificate. In an exem-
plary embodiment, these certificates may need to be changed
on a regular basis to maintain security. To that end, the times-
tamp system 300 may enforce restrictions on the use counts of
signing keys, useable time window of signing keys, or a
combination thereof. Such restrictions may, in some embodi-
ments, be communicated in-band through timestamp data
structures. Alternatively, these restrictions may be fixed
parameters of the CSP 310.

The administrator whitelist may be managed through
administrative traffic, where administrator listings may be
added or removed according to timestamp structures that
meet the current conditions for being classified as adminis-

25

40

45

55

8

trative traffic. Metadata in the timestamp data structure may
unambiguously identify the sub-category of administrative
service requested, thus enabling the CSP 310 to handle the
administrative traffic as intended. For example, and not by
way of limitation, a timestamp structure may indicate through
its metadata that it carries an update to the current date and
time tracked by the CSP 310. In that case, the timestamp data
structure may include the new official time, or incremental
change in time, in the standard date/time field of the data
structure. CSP extensions may allow full management of
administrator lifecycle, including introduction, renewal,
removal of certificates, and may also allow updates to the CSP
clock state, based on this multiplexing of the communication
channel used for timestamp requests. Because predetermined
metadata standards prescribe attribute usage and interpreta-
tion, administrative traffic may be unambiguously identified
while, at the format level, this traffic may appear to be simple
timestamp traffic submitted for verification. Thus, format-
aware filters built into the CSP 310 may allow this traffic to
pass, enabling the CSP 310 to receive it and act accordingly.

To provide accurate signed timestamps, it is desirable for
the timestamp system 300 to keep accurate time. To maintain
that accuracy, a method may be implemented to periodically
update the absolute time as known to the timestamp system
300. As mentioned above, administrative traffic may be used
to set the current time for future timestamp requests. In con-
ventional timestamp systems with high and variable laten-
cies, as a result of uncertain propagation delays between
submitting a request and reacting to it, incremental shift-time
may be provided through administrative traffic, rather than
absolute time updates. While incremental shifts still require
some knowledge of latencies to result in accurate time, they
can provide increased accuracy.

An exemplary timestamp system 300 may be deployed by
a rate-limited, authenticated time-adjustment service to com-
pensate for long-term drift. An unauthenticated service may
be used, allowing only infrequent incremental updates, such
as compensating a few seconds worth of drift once per pre-
determined number of days (e.g., several times a week). This
limited drift compensation would prevent rogue host entities
from substantially changing the signing-device clock, or
would at least limit potential changes, but might fully com-
pensate the drift of high-quality commodity clocks. Alterna-
tively, a rate-limited service without authentication may be
used by automated infrastructure jobs to minimize signing-
device drift. The rate-limited service may also accept “no
shift” as a special operation while still prohibiting changes for
the permitted window. The no-shift operation may allow the
infrastructure job to prevent other processes from modifying
the clock in the next adjustment window if there is no current
need.

Administrator-assisted clock adjustments may be similar
in operation to authenticated network time protocol (NTP)
updates, which are used to synchronize clock updates of
high-end conventional timestamp products. However, since
an exemplary embodiment of the timestamp system 300
decouples the authentication of time updates from that of the
NTP protocol, the complexity of NTP server authentication
may be removed from the timestamp system 300, which
simplifies the trust management. Further, because the incre-
mental clock-adjustment process closely resembles that of
authenticated NTP, the timestamp system 300 may be adapted
for services of high-assurance time-source management sys-
tems.

In some embodiments, as a side effect of not relying on
NTP authentication, the timestamp system 300 may need to
replicate some of the functionality otherwise available to

US 9,225,746 B2

9

authenticated NTP. For example, with respect to latency mea-
surements, when communicating relative clock shifts, the
timestamp system 300 may locally measure or estimate
administrator-to-device-clock latency, whereas this measure-
ment would be automatically derived by a full NTP imple-
mentation.

Thus, an exemplary embodiment of the timestamp system
300 has some awareness of the latency between a timestamp
data structure’s creation by the TSA 230 and the time of
signing the data structure by the CSP 310. Knowledge of this
latency may enable the CSP 310 to more accurately set its
internal clock when the updates to the current time are
received through administrative traffic.

To simplify measurement of local latencies and their varia-
tion, the CSP 310 may include a “pseudo-update” service,
which does not modify the timestamp data structure but
instead performs loopback verification of the data structure
by calling back to the TSA 230. This loopback service may
allow high-resolution calibration of latencies without secu-
rity concerns, as the necessary measurements could be carried
out without changing the timestamp data structure. The loop-
back service may also be used to measure host and input/
output device latencies, and thereby facilitating deployment
even with significant latency or variation outside the CSP
310, such as may be the case in distributed or replicated TSAs
230.

Since administration may be performed in-band, the times-
tamp system 300 may be deployed even in high-assurance
distributed systems. Embedding administrative traffic within
the timestamp data structures, the timestamp system 300 may
be deployed even when network security rules, access con-
trols, or filtering would prohibit adding administrative chan-
nels, opening ports, or establishing new message types.

The above-described minor additions to the CSP 310 may
allow efficient synchronization of reference clocks, which
synchronization may even be automated without forcing
administrator intervention. These additions may also enable
the CSP 310 to crosscheck the TSA 230, thus providing
high-assurance timestamping.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

25

30

40

45

50

55

10

Further, as will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method, or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, aspects of the present inven-
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination of the fore-
going.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-

US 9,225,746 B2

11

ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

The descriptions ofthe various embodiments of the present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

What is claimed is:

1. A computer-implemented method, comprising:

maintaining, at a cryptographic service provider (CSP),
two or more timestamp policies specifying when digital

10

15

20

25

30

35

40

45

50

55

60

65

12

timestamps should be issued, each of the two or more
timestamp policies being associated with one or more
signing keys;
receiving, at the CSP, atimestamp request transmitted from
an untrusted timestamp authority that manages times-
tamping, the untrusted timestamp authority having a
lower assurance than the CSP, and the timestamp request
being accompanied by a first timestamp data structure
from the untrusted timestamp authority and referencing
a first timestamp policy of the two or more timestamp
policies;
determining, with a computer processor, a difference
between a first time specified by the untrusted timestamp
authority in the first timestamp data structure and a sec-
ond time indicated by an internal clock of the CSP;

rejecting the timestamp request if the first timestamp data
structure fails to comply with the first timestamp policy,
wherein the first timestamp policy requires at least that
the difference between the first time and the second time
be below a predetermined threshold; and

signing the first data structure with a first signing key, of the

one or more signing keys associated with the first times-
tamp policy, if the first timestamp data structure com-
plies with the first timestamp policy.

2. The method of claim 1, further comprising multiplexing
a communication channel between the CSP and the times-
tamp authority, wherein administrative traffic and a plurality
of timestamp requests share the communication channel.

3. The method of claim 2, further comprising:

receiving, at the CSP, a second timestamp data structure;

and

identifying the second timestamp data structure as in-band

administrative traffic.

4. The method of claim 3, further comprising updating the
internal clock of the CSP based on the timestamp data struc-
ture identified as administrative traffic.

5. The method of claim 1, wherein the CSP performs times-
tamp services and non-timestamp services.

6. The method of claim 5, wherein one or more timestamp-
related attributes of the CSP are isolated in one or more
partitions of the CSP that are directed toward timestamp
services, and wherein one or more other partitions of the CSP
perform only non-timestamp services.

7. The method of claim 6, further comprising directing
non-timestamp traffic to the one or more other partitions of
the CSP.

8. A timestamp system, comprising:

a cryptographic service provider (CSP) configured to

maintain two or more timestamp policies specifying
when digital timestamps should be issued, each of the
two or more timestamp policies being associated with
one or more signing keys; and

receive a timestamp request transmitted from an
untrusted timestamp authority that manages times-
tamping, the untrusted timestamp authority having a
lower assurance than the CSP, and the timestamp
request being accompanied by a first timestamp data
structure referencing a first timestamp policy of the
two or more timestamp policies; and

a computer processor configured to determine a difference

between a first time specified in the first timestamp data
structure by the untrusted timestamp authority and a
second time indicated by an internal clock of the CSP;
wherein the CSP is further configured to:
reject the timestamp request if the first timestamp data
structure fails to comply with the first timestamp
policy, wherein the first timestamp policy requires at

US 9,225,746 B2

13

least that the difference between the first time and the
second time be below a predetermined threshold; and

sign the first data structure with a first signing key, of the
one or more signing keys associated with the first
timestamp policy, if the first timestamp data structure
complies with the first timestamp policy.

9. The timestamp system of claim 8, the CSP being further
configured to multiplex a communication channel between
the CSP and the timestamp authority, wherein administrative
traffic and a plurality of timestamp requests share the com-
munication channel.

10. The timestamp system of claim 9, the CSP being further
configured to receive a second timestamp data structure, and
to identify the second timestamp data structure as in-band
administrative traffic.

11. The timestamp system of claim 10, the CSP being
further configured to update its internal clock based on the
timestamp data structure identified as administrative traffic.

12. The timestamp system of claim 8, the CSP being further
configured to perform timestamp services and non-times-
tamp services.

13. The timestamp system of claim 12, wherein one or
more timestamp-related attributes of the CSP are isolated in
one or more partitions of the CSP that are directed toward
timestamp services, and wherein one or more other partitions
of the CSP perform only non-timestamp services.

14. The timestamp system of claim 13, the CSP being
further configured to direct non-timestamp traffic to the one
or more other partitions of the CSP.

15. A computer program product comprising a non-transi-
tory computer readable storage medium having computer
readable program code embodied thereon, the computer read-
able program code executable by a processor to perform a
method, comprising:

maintaining, at a cryptographic service provider (CSP),

two or more timestamp policies specifying when digital
timestamps should be issued, each of the two or more
timestamp policies being associated with one or more
signing keys;

receiving, at the CSP, a timestamp request transmitted from

an untrusted timestamp authority that manages times-
tamping, the untrusted timestamp authority having a

10

15

20

25

30

35

40

14

lower assurance than the CSP, and the timestamp request
being accompanied by a first timestamp data structure
referencing a first timestamp policy of the two or more
timestamp policies;

determining a difference between a first time specified by
the untrusted timestamp authority in the first timestamp
data structure and a second time indicated by an internal
clock of the CSP;

rejecting the timestamp request if the first timestamp data
structure fails to comply with the first timestamp policy,
wherein the first timestamp policy requires at least that
the difference between the first time and the second time
be below a predetermined threshold; and

signing the first data structure with a first signing key, of the
one or more signing keys associated with the first times-
tamp policy, if the first timestamp data structure com-
plies with the first timestamp policy.

16. The computer program product of claim 15, the method
further comprising:
receiving, at the CSP, a second timestamp data structure;
and

identifying the second timestamp data structure as in-band
administrative traffic.

17. The computer program product of claim 16, the method
further comprising updating the internal clock of the CSP
based on the timestamp data structure identified as adminis-
trative traffic.

18. The computer program product of claim 15, wherein
the CSP performs timestamp services and non-timestamp
services.

19. The computer program product of claim 18, wherein
one or more timestamp-related attributes of the CSP are iso-
lated in one or more partitions of the CSP that are directed
toward timestamp services, and wherein one or more other
partitions of the CSP perform only non-timestamp services.

20. The computer program product of claim 19, the method
further comprising directing non-timestamp traffic to the one
or more other partitions of the CSP.

#* #* #* #* #*

